

Hello everyone! I am Osamu Kada.

In the previous video, we proved Cayley-Hamilton Theorem from the approach using the notion of matrices whose components are polynomials in the matrix.

Today I'm going to prove the theorem from the approach using the notion of R -module, here R is the polynomial ring $\mathbb{R}[t]$, or $M_n(\mathbb{R}[t])$. The theorem states as follows.

Theorem (Cayley-Hamilton)

Let A be an $n \times n$ matrix whose components are real numbers (or elements of a commutative ring R), and let $P_A(t) := \det(tI - A) \in \mathbb{R}[t]$ be the characteristic polynomial of A , here I is the identity matrix. Then substituting A for t , we have $P_A(A) = \mathbf{0}$, the zero matrix.

Here, denoting $P_A(t) = \sum_{i=0}^n a_i t^i$, $a_n = 1$, $a_{n-1} = -\text{tr}(A)$, \dots , $a_0 = (-1)^n \det A$, $P_A(A) = \sum_{i=0}^n a_i A^i = \mathbf{0}$, here $A^0 = I$. That is, every square matrix satisfies its own characteristic equation.

Now we prove the theorem.

Proof. Let $B(t) := tI - A^T \in M_n(\mathbb{R}[t])$, here A^T is the transposed matrix of A . Then $\det B(t) = \det(tI - A^T) = \det(tI - A) = P_A(t)$.

Let $\widetilde{B(t)} \in M_n(\mathbb{R}[t])$ be the adjugate matrix of $B(t)$. Then we have

$$B(t)\widetilde{B(t)} = \widetilde{B(t)}B(t) = (\det B(t))I = P_A(t)I.$$

Let $R := \mathbb{R}[t]$, $V := \mathbb{R}^n$, and consider V as R -module by the following: for $f(t) = \sum_{i=0}^n a_i t^i \in \mathbb{R}[t]$ and $x \in V$,

$$f(t) \cdot x := f(A)x = \sum_{i=0}^n a_i A^i x \in V.$$

Here we recall the notion of R -module M .

Let R be a ring, and M an abelian group. Then M is said to be an R -module if for $r \in R$ and $x \in M$, $r \cdot x \in M$ is defined, and the following conditions are satisfied: for $r, s \in R$, $x, y \in M$,

- (i) $(rs) \cdot x = r \cdot (s \cdot x)$,
- (ii) $1 \cdot x = x$
- (iii) $r \cdot (x + y) = r \cdot x + r \cdot y$,
- (iv) $(r + s) \cdot x = r \cdot x + s \cdot x$.

In our case, R is the polynomial ring $\mathbb{R}[t]$, $M = V = \mathbb{R}^n$, and the action of R to M is defined as above. The condition (i) is satisfied because

$$\begin{aligned} \text{(i)} \quad (a_l t^l b_m t^m) \cdot x &= (a_l b_m t^{l+m}) \cdot x \\ &= a_l b_m A^{l+m} x, \\ (a_l t^l) \cdot (b_m t^m \cdot x) &= (a_l t^l) \cdot (b_m A^m x) \\ &= a_l A^l (b_m A^m x) \\ &= a_l b_m A^{l+m} x, \text{ and} \\ \text{(ii)} \quad 1 \cdot x &= A^0 x = I x = x. \end{aligned}$$

Let $R' := M_n(R)$ and consider $V^n = (\mathbb{R}^n)^n$ as R' -module as usual, that is, matrix times vector.

Since $B(t) = tI - A^T \in R' = M_n(\mathbb{R}[t])$ and $\begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} \in V^n = (\mathbb{R}^n)^n$, here e_1, \dots, e_n is the canonical basis of $V = \mathbb{R}^n$, we have

$$\begin{aligned} B(t) \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} &= (tI - A^T) \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \left(\begin{pmatrix} t & & \\ & \ddots & \\ & & t \end{pmatrix} - \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \right) \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} \\ &= \begin{pmatrix} t \cdot e_1 \\ \vdots \\ t \cdot e_n \end{pmatrix} - \begin{pmatrix} a_{11} \cdot e_1 + \dots + a_{n1} \cdot e_n \\ \vdots \\ a_{1n} \cdot e_1 + \dots + a_{nn} \cdot e_n \end{pmatrix} = \begin{pmatrix} Ae_1 \\ \vdots \\ Ae_n \end{pmatrix} - \begin{pmatrix} \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix} \\ \vdots \\ \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \vec{0} \\ \vdots \\ \vec{0} \end{pmatrix}. \end{aligned}$$

Hence, we have that

$$\begin{pmatrix} \vec{0} \\ \vdots \\ \vec{0} \end{pmatrix} = \widetilde{B(t)} B(t) \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} P_A(t) & & \\ & \ddots & \\ & & P_A(t) \end{pmatrix} \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} P_A(t) \cdot e_1 \\ \vdots \\ P_A(t) \cdot e_n \end{pmatrix} = \begin{pmatrix} P_A(A) e_1 \\ \vdots \\ P_A(A) e_n \end{pmatrix},$$

which implies that $P_A(A) = \mathbf{O}$. □

Consider the following example.

Let $A = \begin{pmatrix} & -1 \\ 0 & \\ 2 & \end{pmatrix} = (2e_3, \vec{0}, -e_1)$. Then

$$B(t) := tI - A^T = \begin{pmatrix} t & & \\ & t & \\ & & t \end{pmatrix} - \begin{pmatrix} & 0 & 2 \\ -1 & & \\ & & t \end{pmatrix} = \begin{pmatrix} t & & -2 \\ t & t & t \end{pmatrix},$$

$$\widetilde{B(t)} = \begin{pmatrix} t^2 & 2t & \\ -t & t^2 + 2I & t^2 \end{pmatrix}, P_A(t) = \det B(t) = t^3 + 2t,$$

$$P_A(A) = A^3 + 2A,$$

$$\widetilde{B(t)} B(t) = \begin{pmatrix} t^2 & 2t & \\ -t & t^2 + 2I & t^2 \end{pmatrix} \begin{pmatrix} t & -2 \\ t & t \\ 1 & t \end{pmatrix} = \begin{pmatrix} t^3 + 2t & t^3 + 2t & t^3 + 2t \\ & & \end{pmatrix},$$

$$\begin{aligned} B(t) \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} &= \begin{pmatrix} t & & \\ & t & \\ & & t \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} - \begin{pmatrix} & 0 & 2 \\ -1 & & \\ & & t \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} \\ &= \begin{pmatrix} t \cdot e_1 \\ t \cdot e_2 \\ t \cdot e_3 \end{pmatrix} - \begin{pmatrix} 2e_3 \\ 0 \\ -e_1 \end{pmatrix} = \begin{pmatrix} Ae_1 \\ Ae_2 \\ Ae_3 \end{pmatrix} - \begin{pmatrix} 2e_3 \\ 0 \\ -e_1 \end{pmatrix} = \begin{pmatrix} \vec{0} \\ \vec{0} \\ \vec{0} \end{pmatrix}. \end{aligned}$$

So that

$$\begin{pmatrix} \vec{0} \\ \vec{0} \\ \vec{0} \end{pmatrix} = \widetilde{B(t)} B(t) \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} t^3 + 2t & & \\ & t^3 + 2t & \\ & & t^3 + 2t \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

$$= \begin{pmatrix} (t^3 + 2t) \cdot e_1 \\ (t^3 + 2t) \cdot e_2 \\ (t^3 + 2t) \cdot e_3 \end{pmatrix} = \begin{pmatrix} (A^3 + 2A) e_1 \\ (A^3 + 2A) e_2 \\ (A^3 + 2A) e_3 \end{pmatrix},$$

which implies that $A^3 + 2A = P_A(A) = \mathbf{O}$.