
Hello everyone! My name is Osamu Kada. Today I’m going to prove Cayley-
Hamilton Theorem. It states as follows.

fzF Theorem (Cayley-Hamilton)
Let A be an n × n matrix whose components are real numbers. (Instead of real
numbers, we may take any commutative ring R).
And let PA(t) := det(tI − A) be the characteristic polynomial of A, here I is the
identity matrix. Then, by substituting A for t, we have that PA(A) = O, the zero
matrix.

Here, for a polynomial f(t) =
∑m

k=0 akt
k, we define f(A) =

∑m
k=0 akA

k, and
A0 = I, the identity matrix.
For instance, by substituting A for t, t2 +2 turns out to A2 +2I, t turns out to A,
number a turns out to aI, and 0 turns out to O, the zero matrix.

For A = (aij) =

a11 . . . a1n
...

...
an1 . . . ann

 ,

PA(t) =

∣∣∣∣∣∣∣
t

. . .

t

−

a11 . . . an1
...

...
a1n . . . ann


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
t− a11 . . . −an1

...
...

−an1 . . . t− ann

∣∣∣∣∣∣∣
= tn − tr(A)tn−1 + · · ·+ (−1)n detA, and

PA(A) = An − tr(A)An−1 + · · ·+ (−1)n det(A)I.

Consider more concretely the case when n = 2 and let A =

(
a b
c d

)
.

Then detPA(t) = det(tI − A) = t2 − (a+ d)t+ ad− bc, and by substituting A for
t we have detPA(A) = det(AI −A) = detO = 0 ? No, this is false.
Recall that by substituting A for t, t, a and 0 turns out to A, aI and O. respectively.

So,

(
t 0
0 t

)
turns out to

(
A O
O A

)
, and

(
a b
c d

)
turns out to

(
aI bI
cI dI

)
.

Here we are considering the matrices

(
A O
O A

)
and

(
aI bI
cI dI

)
as 2× 2 matrix

whose components are polynomials in the matrix A.

For example, note that the determinant of the matrix

(
I O
O I

)
, considering it as

2×2 matrix whose components are polynomials in A, the determinant of the matrix
is equal to I2 −O2

= I.
But we can also consider it as 4 × 4 matrix whose components are real numbers,
which is the usual one, and its determinant is equal to 1.

Similarly, the determinant of

(
A O
O A

)
is equall to A2 − O2

= A2 considering in

M2(R[A]), and it is equall to (detA)2 considering in M4(R).
Now, back to the computation of PA(A).
PA(A) = A2 − (a+ d)A+ (ad− bc)I, and pulling out the A we have

PA(A) =

(
−d b
c −a

)
A+(ad−bc)I. The matrix

(
−d b
c −a

)
is equal to the negative

of the adjugate matrix of A, so that

PA(A) = −ÃA+ (ad− bc)I = − det(A)I + det(A)I = O.
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Now we prove Cayley-Hamilton theorem. Let

B(t) := tI−AT =

t
. . .

t

−

a11 . . . an1
...

...
a1n . . . ann

, here AT is the transpose of A.

Then B(A) =

A
. . .

A

−

a11I . . . an1I
...

...
a1nI . . . annI

 ∈ Mn(R[A]).

We are considering this matrix B(A) as n× n matrix whose components are poly-
nomials in the matrix A.
The ring of polynomials in A, R[A], is a commutative subring of the non-commutative
ring of n × n matices, Mn(R), we can apply theorems on matrix and determinant
in Mn(R[A].

Let B̃(A) be the adjugate matrix of B(A) considering in Mn(R[A]), not in Mn2(R).

For instance, for A ∈ M2(R) and C :=

(
A O
O O

)
∈ M2(R[A]), the adjugate matrix

of C considering in M2(R[A]) is

(
O O
O A

)
, but the adjugate matrix of C considering

in M4(R) is
(
O O
O O

)
.

Then we have that

B̃(A)B(A) =

detB(A)
. . .

detB(A)

 =

detPA(A)
. . .

detPA(A)

 .

Since components of B(A) are matrices, we can multiply

e1
...
en

 from the right,

here e1, . . . , en is the canonical basis of Rn. Then

B(A)

e1
...
en

 =

Ae1
...

Aen

−

a11e1 + · · ·+ an1en
...

a1ne1 + · · ·+ annen

 =

0⃗
...

0⃗

 .

Hence, we have that

0⃗
...

0⃗

 = B̃(A)B(A)

e1
...
en

 =

PA(A)e1
...

PA(A)en

 ,

which implies that PA(A) = O.



3

Consider the following example. Let A =

 −1
0

2

 = (2e3, 0⃗, −e1). Then

B(t) := tI −AT =

t
t

t

−

 2
0

−1

 =

t −2
t

1 t

 ,

B(A) =

A
A

A

−

 2I
O

−I

 =

A −2I
A

I A

 ,

B̃(A) =

A2 O 2A
O A2 + 2I O
−A O A2

 , PA(t) = detB(t) = t3 + 2t,

PA(A) = det

A −2I
A

I A

 = A3 + 2A,

B̃(A)B(A) =

A2 O 2A
O A2 + 2I O
−A O A2

A −2I
A

I A

 =

A3 + 2A
A3 + 2A

A3 + 2A


B(A)

e1
e2
e3

 =

A
A

A

e1
e2
e3

−

 2I
O

−I

e1
e2
e3


=

Ae1
Ae2
Ae3

−

2e1
0

−e1

 =

2e1
0

−e1

−

2e1
0

−e1

 =

0⃗

0⃗

0⃗

 .

So that

A3 + 2A
A3 + 2A

A3 + 2A

e1
e2
e3

 =

(A3 + 2A)e1
(A3 + 2A)e2
(A3 + 2A)e3

 =

0⃗

0⃗

0⃗

 ,

which implies that PA(A) = A3 + 2A = O.

Consider the case when n = 2 and A =

(
a b
c d

)
. Then

B(t) = tI −AT =

(
t 0
0 t

)
−
(
a c
b d

)
, and

B(A) =

(
A O
O A

)
−
(
aI cI
bI dI

)
∈ M2(R[A]).

Since B(A)

(
e1
e2

)
=

(
Ae1
Ae2

)
−
(
ae1 + ce2
be1 + de2

)
=


(
a
c

)
(
b
d

)
−


(
a
c

)
(
b
d

)
 =


(
0
0

)
(
0
0

)
 ,

we have that

(
PA(A)e1
PA(A)e2

)
= B̃(A)B(A)

(
e1
e2

)
=


(
0
0

)
(
0
0

)
 , implying PA(A) = O.

B(A) is not the zero matrix, but multiplying

e1
e2
e3

 it turns out to zero.

This is sufficient to prove that PA(A) = O. the zero matrix.
And the mutiplication by its adjugate matrix is the zero matrix.


